5. Cross Product
Homework
-
Find the determinant \(\begin{vmatrix} 4 & -2 & 3 \\ 1 & 0 & 5 \\ -2 & 4 & 1 \end{vmatrix}\)
-
Find the cross product \(\vec u\times\vec v\) when \(\vec u=(2,-5,1)\) and \(\vec v=(3,-1,-4)\)
-
Let \(\vec u=(2,3,0)\), \(\vec v=(-4,2,1)\), and \(\vec w=(-2,4,2)\).
-
Find \(\vec u\cdot\vec v\times\vec w\).
-
Find \(\vec w\times\vec v\cdot\vec u\).
-
-
Find the area of the parallelogram with adjacent edges \(\vec u=(3,-2,4)\) and \(\vec v=(-1,2,-3)\).
-
Find the area of the triangle with adjacent edges \(\vec p=(3,-2,-3)\) and \(\vec q=(1,-1,-2)\).
-
Find the area of a parallelogram with adjacent edge vectors \(\vec a\) and \(\vec b\), if \(|\vec a|=4\), \(|\vec b|=2\sqrt{3}\), and the angle between them is \(\theta=60^\circ\).
-
A triangle has vertices \(P=(1,2,3)\), \(Q=(4,1,4)\) and \(R=(2,0,1)\). Find its area.
-
A parallelogram has vertices \(A=(1,3,2)\), \(B=(1,6,5)\), \(C=(3,8,5)\) and \(D=(3,5,2)\), traversed in that order. Find its area.
-
Find the volume of the parallelpiped with adjacent edges \(\vec a=\left\langle3,-4,2\right\rangle\), \(\vec b=\left\langle-2,1,4\right\rangle\), and \(\vec c=\left\langle-1,1,1\right\rangle\)
-
Find the volume of the parallelpiped with adjacent edges \(\overrightarrow{PQ}\), \(\overrightarrow{PR}\), and \(\overrightarrow{PS}\) where \(P=(1,1,1)\), \(Q=(3,2,4)\), \(R=(0,4,-1)\), and \(S=(2,-1,4)\).
-
A rigid object is held fixed at the point \(P=(1,2,3)\). Find the torque on the object, if the force \(\vec F=\langle3,-2,1\rangle\) is applied at the point \(Q=(2,3,4)\).
-
A triangular plate with vertices \(P=(-3,0,0)\), \(Q=(2,0,0)\) and \(R=(0,1,0)\) is held fixed at the origin \(O=(0,0,0)\). The force \(\vec F_1=\left\langle 1,2,0 \right\rangle\) is applied at \(P\) and the force \(\vec F_2=\left\langle -2,1,0\right\rangle\) is applied at \(Q\). What force \(\vec F_3=\left\langle a,b,c\right\rangle\) can be applied at \(R\) to keep the triangle from rotating?
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum